RESOLUTION No. 19-12

A RESOLUTION OF THE MAYOR AND THE CITY COUNCIL OF THE CITY OF DORAL, FLORIDA, AUTHORIZING THE CITY MANAGER TO MODIFY THE PROFESSIONAL SERVICES AGREEMENT (PSA) WITH EE&G ENVIRONMENTAL SERVICES. LLC TO PROVIDE ADDITIONAL ENVIRONMENTAL SERVICES IN THE AMOUNT OF \$6,000.00; TO PERFORM ADDITIONAL IRRIGATION WELL SAMPLING AND MONITORING WELL ABANDONMENT ASSOCIATED WITH THE SITE ASSESSMENT REPORT ADDENDUM III FOR DORAL LEGACY PARK UNDER THE CITY'S BROWNFIELD PROGRAM; AUTHORIZING THE CITY MANAGER TO EXPEND BUDGETED FUNDS IN FURTHERANCE THEREOF: **PROVIDING** FOR **IMPLEMENTATION:** AND PROVIDING FOR AN EFFECTIVE DATE

WHEREAS, on November 18, 2015, the Mayor and City Council approved the Doral Legacy Park Sports and Wellness Complex Green Reuse Area" pursuant to Section 376.80, Florida Statutes, of Florida's Brownfield Redevelopment Act; and

WHEREAS, the intent of the "Doral Legacy Park Sports and Wellness Complex Green Reuse Area" is to address the environmental challenges at the park; and

WHEREAS, on December 21, 2015, the City of Doral entered into a Brownfield Site Rehabilitation Agreement (BSRA) with Miami-Dade County Department of Regulatory and Economic Resources ("DRER") pursuant to Section 376.80, Florida Statutes, of Florida's Brownfield Redevelopment Act; and

WHEREAS, on April 29, 2016, EE&G was issued a service order by the City of Doral to prepare the Doral Legacy Park Brownfield Source Removal Report (SAR) and Remedial Action Plan (RAP) report consistent with the requirements set forth in the executed Brownfield Site Rehabilitation Agreement (BSRA) with Miami-Dade County Department of Regulatory and Economic Resources ("DRER"), Division of Environmental

Resources Management (DERM); and

WHEREAS, on April 11, 2018, the Council approved Resolution No.18-63 for EE&G Environmental Services to provide environmental professional services in an amount not to exceed \$21,000 at Doral Legacy Park under the Brownfield Program. The purpose of this task order was to perform additional groundwater sampling and soil testing and prepare the Site Assessment Report Addendum II (SARA II) in order to respond to DERM's comments on the initial Site Assessment Report; and

WHEREAS, on December 10, 2018, Miami-Dade County DERM issued the Site Rehabilitation Completion Order (SRCO) for Doral Legacy Park subject to successfully completing the abandon of all monitoring wells and submittal of a "Well Abandonment Report" to DERM; and

WHEREAS, staff respectfully requests that the City Council authorize the City Manager to enter into an agreement with EE&G Environmental Services, LLC for the provision of additional environmental professional services in an amount of \$6,000 to address the condition set forth in the SRCO letter, dated December 10, 2018, issued by Miami-Dade County DERM; and

WHEREAS, the funds for this service order are allocated from account number 001.50005.500492.

NOW THEREFORE BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY OF DORAL AS FOLLOWS:

Section 1. The foregoing recital is confirmed, adopted, and incorporated herein and made a part hereof by this reference.

Section 2. The City Council hereby authorizes the City Manager to modify the

existing PSA's budget (\$21,000) with EE&G Environmental, LLC under Resolution No. 18-63 in an amount not to exceed \$6,000 to complete the additional irrigation wells samples and monitoring well abandonment associated with the SARA III for Doral Legacy Park. The scope of services and corresponding documents are enclosed in Exhibit A.

Section 3. This Resolution shall take effect immediately upon adoption.

The foregoing Resolution was offered by Vice Mayor Mariaca who moved its adoption.

The motion was seconded by Councilmember Cabral and upon being put to a vote, the vote was as follows:

Mayor Juan Carlos Bermudez	Yes
Vice Mayor Claudia Mariaca	Yes
Councilwoman Digna Cabral	Yes
Councilman Pete Cabrera	Yes
Councilwoman Christi Fraga	Yes

PASSED AND ADOPTED this 9 day of January, 2019.

JUAN CARLOS BERMUDEZ, MAYOR

ATTEST:

CONNIE DIAZ, MMC

CITY CLERK

APPROVED AS TO FORM AND LEGAL SUFFICIENCY FOR THE USE AND RELIANCE OF THE CITY OF DORAL ONLY:

LUIS FIGUEREDO, ESQ.

CITY ATTORNEY

EXHIBIT "A"

EXHIBIT A

5751 Miami Lakes Drive Miami Lakes, Florida 33014 Tel: (305) 374-8300 Fax: (305) 374-9004

November 19, 2018 Proposal No. 2016-3227.PSARA3

City of Doral c/o The Goldstein Environmental Law Firm, P.A. One SE Third Avenue, Suite 2120 Miami, FL 33131 mgoldstein@goldsteinenvlaw.com

Subject:

Proposal for Site Assessment Report Addendum III

City of Doral Legacy Park Brownfields Site

11300 NW 81st Terrace, Doral, Miami-Dade County, FL

Dear Michael:

EE&G Environmental Services, LLC (EE&G) has prepared this proposal to prepare a Site Assessment Report Addendum III (SARA III) at the above-referenced property in response to the November 1, 2018 correspondence issued by the Miami-Dade County Division of Environmental Resources Management (DERM).

- Task 1 Irrigation Well Sampling Event: EE&G will collect water samples from the two onsite irrigation well systems. The samples will be analyzed for Ammonia (as N) using EPA Method 350.1. EE&G will prepare a SARA-III report. A draft of the report will be provided to the Client for review. Upon authorization, EE&G will submit the final Professional Geologist signed/sealed SARA-III to the Miami-Dade County DERM for review.
- Task 2 Monitoring Well Abandonment: EE&G anticipates that DERM will approve the SARA-III and recommendation for No Further Action. Therefore, we have included in this proposal the costs for abandonment of six onsite monitoring wells by a Floridalicensed well drilling contractor and the preparation of a Well Abandonment Report. This task will be postponed until authorized by DERM.

EE&G's budget for the SARA-III is \$6,000.00, including \$2,200.00 for Task 1 and \$3,800.00 for Task 2. Please note that this budget does not include any DERM review fees (if warranted).

Sincerely,

Craig C. Clevenger, P.G. Senior Hydrogeologist

G C. Co

EE&G

Attachments – Professional Services Agreement (PSA)

SARA-III Proposal - Professional Services Agreement City of Doral Legacy Park, 11300 NW 81st Terrace, Doral, FL EE&G Proposal No. 2016-3226 Page 1 of 2

PROFESSIONAL SERVICES AGREEMENT BETWEEN

THE CITY OF DORAL

AND

EE&G ENVIRONMENTAL SERVICES, LLC

This Agreement is made on November 19, 2018, by The City of Doral, Client", and EE&G Environmental Services, LLC ("EE&G").

WITNESSETH

That for the considerations set forth below, the parties hereto do agree as follows:

1. Description of Services:

EE&G's SARA-III Proposal, dated November 19, 2018, attached and incorporated in it's entirety by reference.

2. Period of Performance:

60 days.

3. Basis of Compensation:

\$6,000.00; Lump Sum.

4. Method of Invoicing:

A final invoice will be generated monthly. Payment-in-full is due upon receipt of invoice.

5. **Professional Retainer:**

Waived upon receipt of Purchase Order.

6. **General Conditions:**

- a. Payments for invoices prepared by EE&G are due and payable upon delivery. EE&G reserves the right to apply a 1.5% monthly finance charge on all balances over 30 days outstanding.
- b. This Agreement may be terminated by either party hereto upon 10 days notice in writing to the other party. Upon termination, EE&G shall prepare and submit a final invoice for services rendered to the date of termination together with any termination expenses incurred.
- c. The parties hereto shall maintain in full force and effect comprehensive public liability insurance with coverage limits which are reasonable in light of the work to be undertaken, and workmen's compensation insurance as required by law.

SARA-III Proposal - Professional Services Agreement City of Doral Legacy Park, 11300 NW 81st Terrace, Doral, FL EE&G Proposal No. 2016-3226 Page 2 of 2

- d. Any drawings and specifications developed pursuant to this Agreement are instruments of service, and as such the original documents, tracings, and field notes are and remain the property of EE&G regardless of whether the work for which they were prepared is executed.
- e. In the event that legal action is instituted to enforce any of the terms of this Agreement, the party, which does not prevail, shall pay the legal expenses of the prevailing party, including attorney's fees.
- f. The parties hereto each binds itself, its successors, executors, administrators and assigns to the other party to this Agreement and to the successors, executors, administrators and assigns of such other party in respect of all covenants of this Agreement.
- g. EE&G's liability for services to be rendered under this Agreement shall be limited to \$1,000,000, unless Client pays for the assumption of additional liability by EE&G as a separate line item in Article 3, *Basis of Compensation*.
- h. If applicable, Client agrees that EE&G shall not be responsible for liability caused by the presence or release of hazardous substances or petroleum products at the site. The Client will either make others responsible for liabilities due to such conditions, or will indemnify and save harmless EE&G from such liability. The provisions of this Article (6,h) shall survive any termination of this Agreement.

IN WITNESS WHEREOF, the parties hereto have caused the Agreement to be executed by their duly authorized officers on the date first written above.

EE&G E	Environmental Services, LLC	Client The City of Doral	
Sign:	G C. Co	Sign: (tuan)	
Name:	Craig C. Clevenger, P.G.	Name: EDWARD A. POJAS	
Title:	Vice President	Title:	
Date:	11/27/2018	Date: 11. 27. 18	

RESOLUTION No. 18-63

A RESOLUTION OF THE MAYOR AND THE CITY COUNCIL OF THE CITY OF DORAL, FLORIDA, AUTHORIZING THE CITY MANAGER TO ENTER INTO AN AGREEMENT CONSISTENT WITH THE REQUIREMENTS SET FORTH IN **PROFESSIONAL** SERVICES **AGREEMENT** AND CORRESPONDING SCOPE OF **SERVICES** WITH **ENVIRONMENTAL** SERVICES, LLC TO **PROVIDE ENVIRONMENTAL PROFESSIONAL SERVICES IN AN AMOUNT** NOT TO EXCEED \$21,000.00 TO PERFORM ADDITIONAL GROUNDWATER AND SOIL TESTING AND PREPARE THE SITE ASSESSMENT REPORT ADDENDUM II FOR DORAL LEGACY PARK UNDER THE CITY'S BROWNFIELD PROGRAM: AUTHORIZING THE CITY MANAGER TO EXPEND FUNDS IN FURTHERANCE THEREOF: **PROVIDING** FOR IMPLEMENTATION: AND PROVIDING FOR AN EFFECTIVE DATE

WHEREAS, on November 18, 2015, the Mayor and City Council approved the Doral Legacy Park Sports and Wellness Complex Green Reuse Area" pursuant to Section 376.80, Florida Statutes, of Florida's Brownfield Redevelopment Act.

WHEREAS, the intent of the "Doral Legacy Park Sports and Wellness Complex Green Reuse Area" is to address the environmental challenges at the park; and

WHEREAS, on December 21, 2015, the City of Doral entered into a Brownfield Site Rehabilitation Agreement (BSRA) with Miami-Dade County Department of Regulatory and Economic Resources ("DRER") pursuant to Section 376.80, Florida Statutes, of Florida's Brownfield Redevelopment Act; and

WHEREAS, on April 29, 2016, EE&G was issued a service order by the City of Doral to prepare the Doral Legacy Park Brownfield Source Removal Report and Remedial Action Plan Report consistent with the requirements set forth in the executed Brownfield Site Rehabilitation Agreement (BSRA) with Miami-Dade County Department of Regulatory

and Economic Resources ("DRER").

WHEREAS, the intent of this request is to obtain additional funding to complete additional groundwater and soil testing required by DRER and preparation of the Site Assessment Report Addendum II (SARA II); and

WHEREAS, staff respectfully requests that the City Council authorize the City Manager to enter into an agreement with EE&G Environmental Services, LLC for the provision of environmental professional services in an amount not to exceed \$21,000; and

WHEREAS, the funds for this service order are allocated from account number 001.50005.500492.

NOW THEREFORE BE IT RESOLVED BY THE CITY COUNCIL OF THE CITY
OF DORAL AS FOLLOWS:

<u>Section 1.</u> The foregoing recital is confirmed, adopted, and incorporated herein and made a part hereof by this reference.

Section 2. The City Council hereby authorizes the City Manager to enter into an agreement with EE&G Environmental, LLC for the provision of environmental professional services to complete additional testing required by DRER and preparation of the Site Assessment Report Addendum II (SARA II) in an amount not to exceed \$21,000.

A copy of the PSA and corresponding Scope of Services is provided in Exhibit "A".

Section 3. This Resolution shall take effect immediately upon adoption.

The foregoing Resolution was offered by Councilmember Mariaca who moved its

adoption. The motion was seconded by Vice Mayor Rodriguez and upon being put to a vote, the vote was as follows:

Mayor Juan Carlos Bermudez	Yes
Vice Mayor Ana Maria Rodriguez	Yes
Councilman Pete Cabrera	Yes
Councilwoman Christi Fraga	Yes
Councilwoman Claudia Mariaca	Yes

PASSED AND ADOPTED this 11 day of April, 2018.

JUAN CARLOS BERMUDEZ, MAYOF

ATTEST:

CONNIEDIAZ, CMC

CITY CLERK

APPROVED AS TO FORM AND LEGAL SUFFIENCY FOR THE USE AND RELIANCE OF THE CITY OF DORAL ONLY:

WEISS, SEROTA, HELPMAN, COLE & BIERMAN, P.L.

CITY ATTORNEY

EXHIBIT "A"

5751 Miami Lakes Drive Miami Lakes, Florida 33014 Tel: (305) 374-8300 Fax: (305) 374-9004

March 12, 2018 Proposal No. 2016-3227.PSARA

City of Doral c/o The Goldstein Environmental Law Firm, P.A. One SE Third Avenue, Suite 2120 Miami, FL 33131 mgoldstein@goldsteinenvlaw.com

Subject: Site Assessment Report Addendum II

City of Doral Legacy Park Site

11300 NW 81st Terrace, Doral, Miami-Dade County, FL

Dear Michael:

EE&G Environmental Services, LLC (EE&G) has prepared this proposal to prepare a Site Assessment Report Addendum II (SARA II) at the above-referenced property in response to the October 20, 2017 correspondence issued by the Miami-Dade County Division of Environmental Resources Management (DERM).

1.0 PROPOSED SCOPE OF SERVICES

EE&G will prepare a Proposed Sampling Plan that will outline the location of soil and groundwater samples, the sampling methodology, and proposed analyses. Upon receipt of DERM approval, the remaining scope will be modified (if necessary) and the sampling event completed.

EE&G will propose instead of sampling each of the 19+ acres on the property as requested by DERM, to allow the expanded sampling to be conducted on 10 acres of the site, and take into consideration previous data. EE&G will collect soil samples representing 10 total acres. The 10 soil samples will be composted of 10 sub-samples from each acres, which will be composited to represent one sample for the 0 to 2-foot BLS interval and another to represent the 2 to 4-foot BLS interval for each of the 10 acres.

- A drilling crew will be required to advance 100 soil borings.
- A total of 20 composite soil samples will be collected for laboratory analyses of Total Arsenic using EPA Method 6010.
- A subset of 4 samples also will be analyzed for the following parameters:
 - Volatile Organic Compounds (VOCs) by EPA Method 8260
 - Semi-Volatile Organic Compounds (SVOCs) by EPA Method 8270
 - Total Petroleum Hydrocarbons (TPHs) by Method FL-PRO
 - Chlorinated Pesticides by EPA Method 8081
 - Total barium, cadmium, chromium, lead, mercury, selenium and silver by EPA Methods 6010 and 7470

EE&G will supervise the installation of four shallow monitoring wells. Monitoring wells will be constructed of 1.5-inch diameter casings, with 10-feet of pre-packed well screen (set from approximately 1 to 11-feet BLS – adjusted to be screened across the top of the water table) and 2-feet of solid riser to reach the surface. Wells will be capped with water-tight lids, within a protective steel manhole.

City of Doral c/o The Goldstein Environmental Law Firm, P.A. Mr. Michael R. Goldstein, Esq. March 12, 2018
Page 2

 EE&G will return following a minimum 24-hour equilibration period and collect groundwater samples from the five newly-installed monitoring wells, which will be analyzed for Total Arsenic by EPA Method 6010.

EE&G will evaluate the assessment findings and incorporate the assessment methodologies, findings, conclusions and recommendations into a SARA-II report, including associated figures, tables, attachments and supporting documentation.

A draft of the report will be provided to the Client for review. Upon authorization, EE&G will submit the final Professional Geologist signed/sealed SARA to the Miami-Dade County DERM for review.

3.0 FEE & TIME FRAME

Upon receipt of authorization to proceed, EE&G can complete the proposed scope of services within 20 business days.

EE&G's budget for the SARA-2 is \$21,000.00, including:

- \$1,000.00 to prepare a Sampling Plan.
- \$20,000.00 to install the wells and borings, and have the laboratory analyze the samples.

Please do not hesitate to contact us if you have any questions concerning this proposal. Sincerely,

Craig C. Clevenger, P.G.

S C. Co

Senior Hydrogeologist

EE&G

Attachments – Professional Services Agreement (PSA)

SARA-II Proposal - Professional Services Agreement City of Doral Legacy Park, 11300 NW 81st Terrace, Doral, FL EE&G Proposal No. 2016-3226 Page 1 of 2

PROFESSIONAL SERVICES AGREEMENT BETWEEN

THE CITY OF DORAL AND

EE&G ENVIRONMENTAL SERVICES, LLC

This Agreement is made on March 12, 2018, by The City of Doral, Client", and EE&G Environmental Services, LLC ("EE&G").

WITNESSETH

That for the considerations set forth below, the parties hereto do agree as follows:

1. Description of Services:

EE&G's SARA-II Proposal, dated March 12, 2018, attached and incorporated in it's entirety by reference.

2. Period of Performance:

20 business days from received authorization to proceed.

3. Basis of Compensation:

\$21,000.00; Lump Sum.

4. Method of Invoicing:

A final invoice will be generated monthly. Payment-in-full is due upon receipt of invoice.

5. **Professional Retainer:**

Waived upon receipt of Purchase Order.

6. General Conditions:

- a. Payments for invoices prepared by EE&G are due and payable upon delivery. EE&G reserves the right to apply a 1.5% monthly finance charge on all balances over 30 days outstanding.
- b. This Agreement may be terminated by either party hereto upon 10 days notice in writing to the other party. Upon termination, EE&G shall prepare and submit a final invoice for services rendered to the date of termination together with any termination expenses incurred.
- c. The parties hereto shall maintain in full force and effect comprehensive public liability insurance with coverage limits which are reasonable in light of the work to be undertaken, and workmen's compensation insurance as required by law.

SARA-II Proposal - Professional Services Agreement City of Doral Legacy Park, 11300 NW 81st Terrace, Doral, FL EE&G Proposal No. 2016-3226 Page 2 of 2

- d. Any drawings and specifications developed pursuant to this Agreement are instruments of service, and as such the original documents, tracings, and field notes are and remain the property of EE&G regardless of whether the work for which they were prepared is executed.
- e. In the event that legal action is instituted to enforce any of the terms of this Agreement, the party, which does not prevail, shall pay the legal expenses of the prevailing party, including attorney's fees.
- f. The parties hereto each binds itself, its successors, executors, administrators and assigns to the other party to this Agreement and to the successors, executors, administrators and assigns of such other party in respect of all covenants of this Agreement.
- g. EE&G's liability for services to be rendered under this Agreement shall be limited to \$1,000,000, unless Client pays for the assumption of additional liability by EE&G as a separate line item in Article 3, Basis of Compensation.
- h. If applicable, Client agrees that EE&G shall not be responsible for liability caused by the presence or release of hazardous substances or petroleum products at the site. The Client will either make others responsible for liabilities due to such conditions, or will indemnify and save harmless EE&G from such liability. The provisions of this Article (6,h) shall survive any termination of this Agreement.

IN WITNESS WHEREOF, the parties hereto have caused the Agreement to be executed by their duly authorized officers on the date first written above.

EE&G I	=nvironmental Services, LLC	Client: The City of Doral
Sign:		Sign:
Name:	Craig C. Clevenger, P.G.	Name:
Title:	Vice President	Title:
Date:		Date:

TABLE 1 - FEE ESTIMATE DETAIL Site Assessment Report Addendum City of Doral Legacy Park EE&G Project No. 2016 - 3226

				Task 3	Subtotal
				Soil & Groundwater	
Staff Classification/Expense Item		Rate (\$)	Unit	Sampling	(\$)
LABOR:					
Professional Geologist - Principal		\$150.00	Hour	10	\$1,500.0
Senior Project Professional		\$95.00	Hour	10	\$950.00
Project Geologist		\$75.00	Hour	45	\$3,375.00
CADD Draftsperson		\$60.00	Hour	8	\$480.00
Administrative Assistant		\$40.00	Hour	5	\$200.00
Subtotal - Labor Billing:				\$6,505	\$6,505.00
	Quantity	Rate	Unit		
Direct-Push Driller	4	\$1,950	Day	\$7,800	\$7,800.00
Shallow Well Materials	4	\$500	Each	\$2,000	\$2,000.00
Lab: Soil Samples - Total As	20	\$20	Each	\$400	\$400.00
Lab: Soil Samples - SVOC/Pest/TPH/RCRA/VOC	4	\$675	Each	\$2,700	\$2,700.00
Lab: Groundwater Samples - Total As	4	\$20	Each	\$80	\$80.00
Soil/Groundwater Sampling Equipment	5	\$150	Day	\$750	\$750.00
Truck Rental/Mileage	5	\$85	Day	\$425	\$425.00
Other Direct Costs (5% of Labor)				\$325	\$325.25
Subtotal Expenses				\$14,480	\$14,480.25
Total Project Per Task:				\$20,985	_
		_			
				Task 3 Budget =	\$21,000

Carlos A. Gimenez, Mayor July 25, 2018

Department of Regulatory and Economic Resources

Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

CERTIFIED MAIL 7017 0530 0000 6628 4500 RETURN RECEIPT REQUESTED

Mr. Edward A. Rojas City of Doral 8401 NW 53rd Terrace Doral, FL 33166

Subject:

Site Rehabilitation Completion Order (SRCO)

NW 62nd Street Passive Park Green Reuse Site

6255 NW 102nd Avenue/ Folio Number 35-3017-001-0360

Doral, FL, Miami-Dade County Brownfield Site ID # BF131601001 DERM Permit HWR-845 /File-N/A

Dear Mr. Rojas:

The Miami-Dade County Department of Regulatory and Economic Resources, Division of Environmental Resources Management (DERM), as delegated by the Florida Department of Environmental Protection (FDEP) for the Brownfield Program, has reviewed the Site Assessment Report Addendum (SARA) and No Further Action Proposal (NFAP), dated November 6, 2017 (received June 19, 2018), and Site Assessment Report (SAR) dated December 31, 2016 (received March 13, 2017) for the NW 62nd Street Passive Park Green Reuse Site, located at 6255 NW 102nd Avenue, Doral, Florida. Maps showing the location of the NW 62nd Street Passive Park Green Reuse Site and the former location of the "contaminated site" (i.e., contaminant plume) for which this Order is being issued are attached as Exhibits 1 and 2 and are incorporated by reference herein.

The contamination discovered on June 25, 2015 consisted of arsenic. The contamination source is unknown, but was attributed to natural background or anthropogenic sources in the November 6, 2017 SARA. The SARA/NFAP is supported by earlier submittals, prepared pursuant to the Brownfield Site Rehabilitation Agreement and the requirements of Chapter 62-780, Florida Administrative Code (F.A.C.)., which can be found in DERM's electronic data management system at: http://ecmrer.miamidade.gov.

Based on the documentation submitted with the SARA/NFAP and other submitted documents, DERM has reasonable assurance that the City of Doral has met the criteria in Chapter 62-780, Florida Administrative Code (F.A.C.). The submittals indicate that soil and groundwater contaminant concentrations are below the applicable Soil Cleanup Target Levels and Maximum Concentration Limits or Groundwater Cleanup Target Levels as adopted in Chapter 62-777, F.A.C. (effective date April 17, 2005). Therefore, you have satisfied the site rehabilitation requirements for the above-referenced contaminated site and are released from any

Delivering Excellence Every Day

Mr. Edward A. Rojas NW 62nd Street Passive Park Green Reuse Site HWR-845/F-N/A/BF Site ID# BF131601001 Page two

4

further obligation to conduct site rehabilitation at the contaminated site, except as set forth below. See attached table (Exhibit 3), incorporated by reference herein, which includes information regarding the contaminants, affected media, and applicable cleanup target levels for the contaminated site that is the subject of this Order.

Based upon the information provided by the City of Doral concerning the property located at 6255 NW 102nd Avenue (Folio Number 35-3017-001-0360), it is the opinion of DERM that the City of Doral has successfully and satisfactorily implemented the approved brownfield site rehabilitation agreement schedule and, accordingly, no further action is required to assure that any land use identified in the brownfield site rehabilitation agreement is consistent with existing and proposed uses.

Failure to meet the following requirement will result in the revocation of this Order:

(a) You are required to properly plug and abandon all monitoring wells, injection wells, extraction wells, and sparge wells unless these wells are otherwise required for compliance with a local ordinance or another cleanup within 60 days of receipt of this Order. The wells must be plugged and abandoned in accordance with the requirements of Rule 62-532.500(5), F.A.C. A Well Plugging Report shall be submitted within 30 days of well plugging.

Further, in accordance with Section 376.30701(4), Florida Statutes (F.S.), upon completion of site rehabilitation, additional site rehabilitation is not required unless it is demonstrated that:

- (a) Fraud was committed in demonstrating site conditions or completion of site rehabilitation;
- (b) New information confirms the existence of an area of previously unknown contamination which exceeds the site-specific rehabilitation levels established in accordance with Section 376.30701(2), F.S., or which otherwise poses the threat of real and substantial harm to public health, safety, or the environment;
- (c) A new discharge of pollutants or hazardous substances occurs at the site subsequent to the issuance of this Order.

Legal Issues

DERM's Order shall become final unless a timely petition for an administrative hearing is filed under sections 120.569 and 120.57, F.S., within 21 days of receipt of this Order. The procedures for petitioning for a hearing are set forth below.

Persons affected by this Order have the following options:

Mr. Edward A. Rojas NW 62nd Street Passive Park Green Reuse Site HWR-845/F-N/A/BF Site ID# BF131601001 Page three

₹

- A. If you choose to accept DERM's decision regarding this SRCO, you do not have to do anything. This Order is final and effective on the date filed with the Clerk of DERM, which is indicated on the last page of this Order.
- B. If you choose to challenge the decision, you may do the following:
 - 1. File a request for an extension of time to file a petition for hearing with the office of the Director of DERM at 701 NW 1st CT, 4th Floor, Miami, Florida 33136, within 21 days of receipt of this Order. Such a request should be made if you wish to meet with DERM in an attempt to informally resolve any disputes without first filing a petition for hearing; or
 - 2. File a petition for administrative hearing with the office of the Director of DERM at 701 NW 1st CT, 4th Floor, Miami, Florida 33136, within 21 days of receipt of this Order.

Please be advised that mediation of this decision pursuant to section 120.573, F.S., is not available.

How to Request an Extension of Time to File a Petition for Hearing

For good cause shown, pursuant to Rule 62-110.106(4), F.A.C., DERM may grant a request for an extension of time to file a petition for hearing. Such a request must be filed (received) by the office of the Director of DERM at 701 NW 1st CT, 4th Floor, Miami, Florida 33136, within 21 days of receipt of this Order. Petitioner, if different from the City of Doral, shall mail a copy of the request to the City of Doral at the time of filing. Timely filing a request for an extension of time tolls the time period within which a petition for administrative hearing must be made.

How to File a Petition for Administrative Hearing

A person whose substantial interests are affected by this Order may petition for an administrative hearing under sections 120.569 and 120.57, F.S. The petition must contain the information set forth below and must be filed (received) by the office of the Director of DERM at 701 NW 1st CT, 4th Floor, Miami, Florida 33136, within 21 days of receipt of this Order. Petitioner, if different from the City of Doral, shall mail a copy of the petition to the City of Doral at the time of filing. Failure to file a petition within this time period shall waive the right of anyone who may request an administrative hearing under sections 120.569 and 120.57, F.S.

Pursuant to subsection 120.569(2), F.S., and Rule 28-106.201, F.A.C., a petition for administrative hearing shall contain the following information:

Mr. Edward A. Rojas NW 62nd Street Passive Park Green Reuse Site HWR-845/F-N/A/BF Site ID# BF131601001 Page four

- a) The name, address, and telephone number of each petitioner; the name, address, and telephone number of the petitioner's representative, if any; the site owner's name and address, if different from the petitioner; the Brownfield site ID and DERM permit/file numbers; and the name and address of the facility;
- b) A statement of when and how each petitioner received notice of DERM's action or proposed action;
- c) An explanation of how each petitioner's substantial interests are or will be affected by DERM's action or proposed action;
- d) A statement of the disputed issues of material fact, or a statement that there are no disputed facts;
- e) A statement of the ultimate facts alleged, including a statement of the specific facts the petitioner contends warrant reversal or modification of DERM's action or proposed action;
- f) A statement of the specific rules or statutes the petitioner contends require reversal or modification of DERM's action or proposed action; and
- g) A statement of the relief sought by the petitioner, stating precisely the action petitioner wishes DERM to take with respect to DERM's action or proposed action.

This Order is final and effective on the date filed with the Clerk of DERM, which is indicated on the last page of this Order. Timely filing a petition for administrative hearing postpones the date this Order takes effect until DERM issues either a final order pursuant to an administrative hearing or an Order Responding to Supplemental Information provided to DERM pursuant to meetings with DERM.

Judicial Review

Any party to this Order has the right to seek judicial review of it under section 120.68, F.S., by filing a notice of appeal under rule 9.110 of the Florida Rules of Appellate Procedure with the office of the Director of DERM at 701 NW 1st CT, 4th Floor, Miami, Florida 33136, and by filing a copy of the notice of appeal accompanied by the applicable filing fees with the appropriate district court of appeal. The notice of appeal must be filed within thirty days after this order is filed with the clerk of DERM (see below).

Questions

Any questions regarding DERM's review of your SARA/NFAP should be directed to Janet Gattorno at 701 NW 1st Court, Miami, FL, (305) 372-6700, and Janet.Gattorno@miamidade.gov. Questions regarding legal issues should be referred to the MDC's County Attorney's Office at 305-375-5151. Contact with any of the above does not constitute a petition for administrative hearing or request for an extension of time to file a petition for administrative hearing.

Mr. Edward A. Rojas NW 62nd Street Passive Park Green Reuse Site HWR-845/F-N/A/BF Site ID# BF131601001 Page five

Sincerely,

, Chief

Environmental Monitoring and Restoration Division,

DERM

FILING AND ACKNOWLEDGMENT FILED, on this date, pursuant to §120.52 Florida Statutes, with the designated DERM Clerk, receipt of which is hereby acknowledged.

Clerk Date
(or Deputy Clerk)

Enclosures (Exhibits 1, 2, and 3)

ec: Paul Alan Wierzbicki, P.G., FDEP Southeast District - Paul. Wierzbicki@dep.state.fl.us

Diane Pupa, FDEP Southeast District - diane.pupa@dep.state.fl.us

Carrie L. Kruchell, P.G., FDEP - Carrie L. Kruchell@dep.state.fl.us

Edward Rojas, Manager, City of Doral, Edward.rojas@cityofdoral.com

Julian Perez, City of Doral, <u>Julian.Perez@cityofdoral.com</u>

Kristie Blumer, EE&G, kblumer@eeandg.com

Craig Clevenger, P.G. EE&G, cclevenger@eeandg.com

Michael R. Goldstein, Esq., mgoldstein@goldsteinenvlaw.com

File

P.E. CERTIFICATION

Site Assessment Report Addendum (SARA) and No Further Action Proposal (NFAP) dated November 6, 2017 (received June 19, 2018), along with the Site Assessment Report dated December 31, 2016 (received March 13, 2017), for the NW 62nd Street Passive Park Green Reuse Site, located at 6255 NW 102nd Avenue, Doral, Miami-Dade County, BSRA ID# 131601001, FDEP-N/A, DERM HWR-845/File-N/A.

I hereby certify that in my professional judgment, the components of this SARA/NFAP prepared for the contamination discovered at the above-referenced facility satisfy the requirements set forth in Chapter 62-780, Florida Administrative Code (F.A.C.), and that the conclusions in this report provide reasonable assurances that the site rehabilitation objectives stated in Chapter 62-780, F.A.C., have been met.

	I personally completed this review	ew.	
<u>X</u>	This review was conducted by _ working under my direct superv		_

Wilbur Mayorga, P.E.

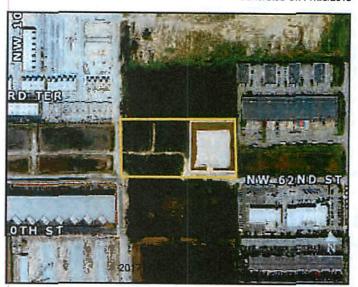
Professional Engineer #50625

07/25/2018

Date

OFFICE OF THE PROPERTY APPRAISER

Summary Report


Generated On: 7/20/2018

Property Information		
Folio:	35-3017-001-0360	
Property Address:	6255 NW 102 AVE Doral, FL 33178-0000	
Owner	CITY OF DORAL	
Mailing Address	8401 NW 53 TERR DORAL, FL 33166	
PA Primary Zone	8900 INTERIM-AWAIT SPECIFIC ZO	
Primary Land Use	8080 VACANT GOVERNMENTAL : VACANT LAND - GOVERNMENTAL	
Beds / Baths / Half	0/0/0	
Floors	0	
Living Units	0	
Actual Area	0 Sq.Ft	
Living Area	0 Sq.Ft	
Adjusted Area	0 Sq.Ft	
Lot Size	217,800 Sq.Ft	
Year Built	0	

Assessment Information			
Year	2018	2017	2016
Land Value	\$1,350,000	\$1,350,000	\$1,350,000
Building Value	\$0	\$0	\$0
XF Value	\$0	\$0	\$0
Market Value	\$1,350,000	\$1,350,000	\$1,350,000
Assessed Value	\$1,350,000	\$1,350,000	\$1,350,000

Benefit T	уре	2018	2017	2016
Municipal E	xemption	\$1,350,000	\$1,350,000	\$1,350,000

Short Legal Description	
17 53 40 5 AC	
FLA FRUIT LANDS CO SUB NO 1	
PB 2-17	
TR 61 LESS E1/2	
F/A/U 30-3017-001-0360	

Taxable Value Inform	nation		
	2018	2017	2016
County		,	
Exemption Value	\$1,350,000	\$1,350,000	\$1,350,000
Taxable Value	\$0	\$0	\$0
School Board			
Exemption Value	\$1,350,000	\$1,350,000	\$1,350,000
Taxable Value	\$0	\$0	\$0
City			
Exemption Value	\$1,350,000	\$1,350,000	\$1,350,000
Taxable Value	\$0	\$0	\$0
Regional			
Exemption Value	\$1,350,000	\$1,350,000	\$1,350,000
Taxable Value	\$0	\$0	\$0

Sales Info	rmation		
Previous Sale	Price	OR Book- Page	Qualification Description
09/15/2015	\$1,960,000	29779- 2591	Federal, state or local government agency
11/01/2002	\$0	00000- 00000	Sales which are disqualified as a result of examination of the deed

The Office of the Property Appraiser is continually editing and updating the tax roll. This website may not reflect the most current information on record. The Property Appraiser and Miami-Dade County assumes no liability, see full disclaimer and User Agreement at http://www.miamidade.gov/info/disclaimer.asp

Version:

Department of Regulatory and Economic Resources

Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

December 10, 2018

CERTIFIED MAIL7017 0530 0000 6627 7434 RETURN RECEIPT REQUESTED

City of Doral Mr. Edward A. Rojas, City Manager Government Center 8401 NW 53rd Terrace Doral, Florida 33166

Subject:

Site Rehabilitation Completion Order (SRCO)

Doral Legacy Park Green Reuse Site

11400 NW 82nd Street (Folio# 35-3007-001-0340 and 35-3007-001-0330)

Doral, Miami-Dade County, Florida Brownfield Site ID # 131502001 DERM Permit: HWR-647/File-NA

Dear Mr. Rojas:

The Miami-Dade County Department of Regulatory and Economic Resources, Division of Environmental Resources Management (DERM), as delegated by the Florida Department of Environmental Protection (FDEP) for the Brownfields Program, has reviewed the Site Assessment Report Addendum (SARA)/No Further Action Proposal (NFAP), dated November 19, 2018 (received November 21, 2018), along with the Site Assessment Report and Addenda dated September 30, 2016 through August 24, 2018 (received October 13, 2016 through September 28, 2018), for the Doral Legacy Park Green Reuse Site located at 11400 NW 82nd Street, Doral, Florida. Maps showing the location of the Doral Legacy Park Green Reuse Site and the former location of the "contaminated site" (i.e., contaminant plume) for which this Order is being issued are attached as Exhibits 1 and 2 and are incorporated by reference herein.

The contamination, which consisted of arsenic in soil discovered on March 13, 2015, resulted from naturally occurring muck soils. The SARA/NFAP is supported by earlier submittals, prepared pursuant to the requirements of Chapter 62-780, Florida Administrative Code (F.A.C.)., which can be found in DERM's electronic data management system at: http://ecmrer.miamidade.gov.

Based on the documentation submitted with the SARA/NFAP and other submitted documents, DERM has reasonable assurance that the City of Doral has met the criteria in Chapter 62-780, Florida Administrative Code (F.A.C.). The submittals indicate that soil and groundwater contaminant concentrations are below the applicable Soil Cleanup Target Levels and Maximum Concentration Limits or Groundwater Cleanup Target Levels as adopted in Chapter 62-777, F.A.C. (effective date April 17, 2005). Therefore, you have satisfied the site Delivering Excellence Cvery Day

Edward A. Rojas, City Manager Doral Legacy Park Green Reuse Site HWR-647/BF Site ID# 131502001 December 10, 2018 Page two

rehabilitation requirements for the above-referenced contaminated site and are released from any further obligation to conduct site rehabilitation at the contaminated site, except as set forth below. See attached table (Exhibit 3), incorporated by reference herein, which includes information regarding the contaminants, affected media, and applicable cleanup target levels for the contaminated site that is the subject of this Order.

Based upon the information provided by the City of Doral concerning property located at 11400 NW 82nd Street, Doral, it is the opinion of DERM that the City of Doral has successfully and satisfactorily implemented the approved brownfield site rehabilitation agreement schedule and, accordingly, no further action is required to assure that any land use identified in the brownfield site rehabilitation agreement is consistent with existing and proposed uses.

Failure to meet the following requirements will result in the revocation of this Order:

(a) You are required to properly plug and abandon all monitoring wells, injection wells, extraction wells, and sparge wells unless these wells are otherwise required for compliance with a local ordinance or another cleanup within 60 days of receipt of this Order. The wells must be plugged and abandoned in accordance with the requirements of Rule 62-532.500(5), F.A.C. A Well Abandonment Report shall be submitted within 30 days of well plugging.

Further, in accordance with Section 376.30701(4), Florida Statutes (F.S.), upon completion of site rehabilitation, additional site rehabilitation is not required unless it is demonstrated that:

- (a) Fraud was committed in demonstrating site conditions or completion of site rehabilitation;
- (b) New information confirms the existence of an area of previously unknown contamination which exceeds the site-specific rehabilitation levels established in accordance with Section 376.30701(2), F.S., or which otherwise poses the threat of real and substantial harm to public health, safety, or the environment;
- (c) The level of risk is increased beyond the acceptable risk established under Section 376.30701(2), F.S., due to substantial changes in exposure conditions, such as a change in land use from nonresidential to residential use. Any person who changes the land use of the site, thereby causing the level of risk to increase beyond the acceptable risk level, may be required by the Division to undertake additional remediation measures to ensure that human health, public safety, and the environment are protected consistent with Section 376.30701, F.S.; or

Edward A. Rojas, City Manager Doral Legacy Park Green Reuse Site HWR-647/BF Site ID# 131502001 December 10, 2018 Page three

(d) A new discharge of pollutants or hazardous substances occurs at the site subsequent to the issuance of this Order.

Legal Issues

3

DERM's Order shall become final unless a timely petition for an administrative hearing is filed under sections 120.569 and 120.57, F.S., within 21 days of receipt of this Order. The procedures for petitioning for a hearing are set forth below.

Persons affected by this Order have the following options:

- A. If you choose to accept DERM's decision regarding this SRCO, you do not have to do anything. This Order is final and effective on the date filed with the Clerk of DERM, which is indicated on the last page of this Order.
- B. If you choose to challenge the decision, you may do the following:
 - 1. File a request for an extension of time to file a petition for hearing with the office of the Director of DERM at 701 NW 1st CT, 4th Floor, Miami, Florida 33136, within 21 days of receipt of this Order. Such a request should be made if you wish to meet with DERM in an attempt to informally resolve any disputes without first filing a petition for hearing; or
 - 2. File a petition for administrative hearing with the office of the Director of DERM at 701 NW 1st CT, 4th Floor, Miami, Florida 33136, within 21 days of receipt of this Order.

Please be advised that mediation of this decision pursuant to section 120.573, F.S., is not available.

How to Request an Extension of Time to File a Petition for Hearing

For good cause shown, pursuant to Rule 62-110.106(4), F.A.C., DERM may grant a request for an extension of time to file a petition for hearing. Such a request must be filed (received) by the office of the Director of DERM at 701 NW 1st CT, 4th Floor, Miami, Florida 33136, within 21 days of receipt of this Order. Petitioner, if different from the City of Doral, shall mail a copy of the request to the City of Doral at the time of filing. Timely filing a request for an extension of time tolls the time period within which a petition for administrative hearing must be made.

Edward A. Rojas, City Manager Doral Legacy Park Green Reuse Site HWR-647/BF Site ID# 131502001 December 10, 2018 Page four

How to File a Petition for Administrative Hearing

A person whose substantial interests are affected by this Order may petition for an administrative hearing under sections 120.569 and 120.57, F.S. The petition must contain the information set forth below and must be filed (received) by the office of the Director of DERM at 701 NW 1st CT, 4th Floor, Miami, Florida 33136, within 21 days of receipt of this Order. Petitioner, if different from the City of Doral, shall mail a copy of the petition to the City of Doral at the time of filing. Failure to file a petition within this time period shall waive the right of anyone who may request an administrative hearing under sections 120.569 and 120.57, F.S.

Pursuant to subsection 120.569(2), F.S., and Rule 28-106.201, F.A.C., a petition for administrative hearing shall contain the following information:

- a) The name, address, and telephone number of each petitioner; the name, address, and telephone number of the petitioner's representative, if any; the site owner's name and address, if different from the petitioner; the Brownfield Site ID and DERM permit/file numbers; and the name and address of the facility;
- b) A statement of when and how each petitioner received notice of DERM's action or proposed action;
- c) An explanation of how each petitioner's substantial interests are or will be affected by DERM's action or proposed action;
- d) A statement of the disputed issues of material fact, or a statement that there are no disputed facts;
- e) A statement of the ultimate facts alleged, including a statement of the specific facts the petitioner contends warrant reversal or modification of DERM's action or proposed action;
- f) A statement of the specific rules or statutes the petitioner contends require reversal or modification of DERM's action or proposed action; and
- g) A statement of the relief sought by the petitioner, stating precisely the action petitioner wishes DERM to take with respect to DERM's action or proposed action.

This Order is final and effective on the date filed with the Clerk of DERM, which is indicated on the last page of this Order. Timely filing a petition for administrative hearing postpones the date this Order takes effect until DERM issues either a final order pursuant to an administrative hearing or an Order Responding to Supplemental Information provided to DERM pursuant to meetings with DERM.

Judicial Review

Any party to this Order has the right to seek judicial review of it under section 120.68, F.S., by filing a notice of appeal under rule 9.110 of the Florida Rules of Appellate Procedure

Edward A. Rojas, City Manager Doral Legacy Park Green Reuse Site HWR-647/BF Site ID# 131502001 December 10, 2018 Page five

with the office of the Director of DERM at 701 NW 1st CT, 4th Floor, Miami, Florida 33136, and by filing a copy of the notice of appeal accompanied by the applicable filing fees with the appropriate district court of appeal. The notice of appeal must be filed within thirty days after this order is filed with the clerk of DERM (see below).

Questions

₹

Any questions regarding DERM's review of your SARA/NFAP should be directed to Sandra Rezola at 701 NW 1 CT, 305-372-6700, rezols@miamidade.gov. Questions regarding legal issues should be referred to the MDC's County Attorney's Office at 305-375-5151. Contact with any of the above does not constitute a petition for administrative hearing or request for an extension of time to file a petition for administrative hearing.

Sincerely,

, Chief

Environmental Monitoring and Restoration Division, DERM

FILING AND ACKNOWLEDGMENT FILED, on this date, pursuant to §120.52 Florida Statutes, with the designated DERM Clerk, receipt of which is hereby acknowledged.

Clerk

(or Deputy Clerk)

Enclosures (Exhibits 1, 2, and 3)

ec: Paul Alan Wierzbicki, Professional Geologist III, FDEP, <u>Paul.Wierzbicki@dep.state.fl.us</u> Diane Pupa, Program Administrator, FDEP, <u>diane.pupa@dep.state.fl.us</u>

12/10/2018 Date

Carrie L. Kruchell, P.G., Environmental Manager, FDEP,

Carrie.L.Kruchell@dep.state.fl.us

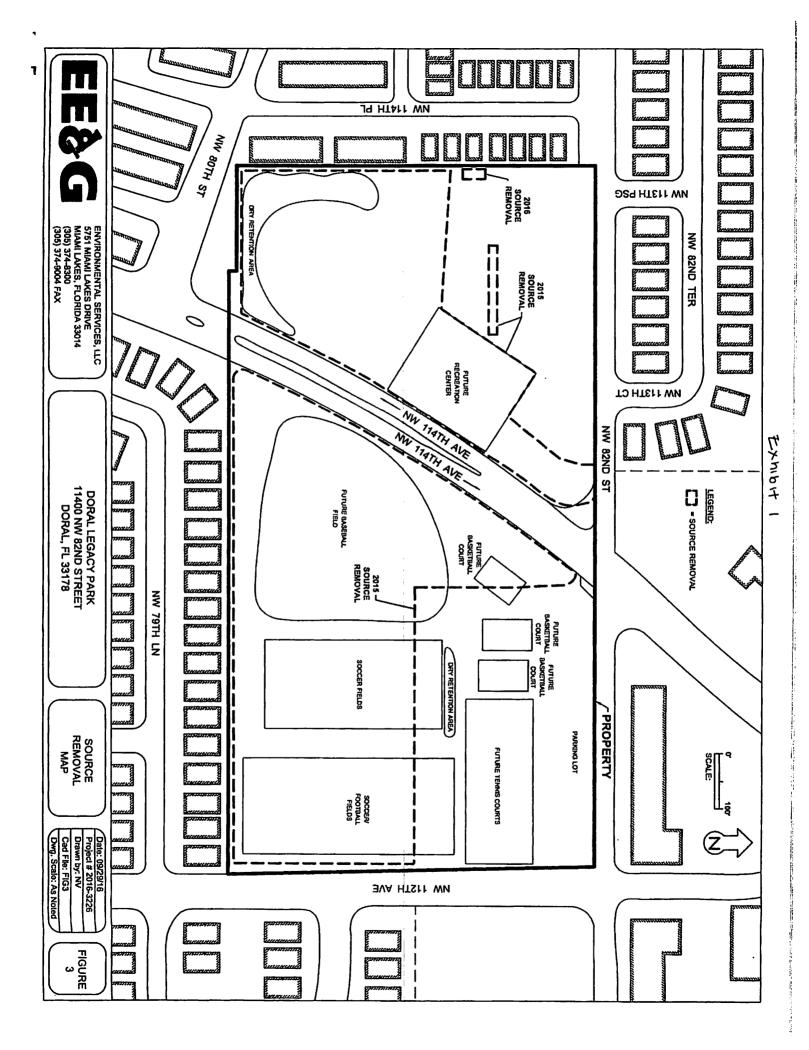
Craig Clevenger, P.G., Senior Hydrogeologist, EE&G Environmental Services, LLC, cclevenger@eeandg.com

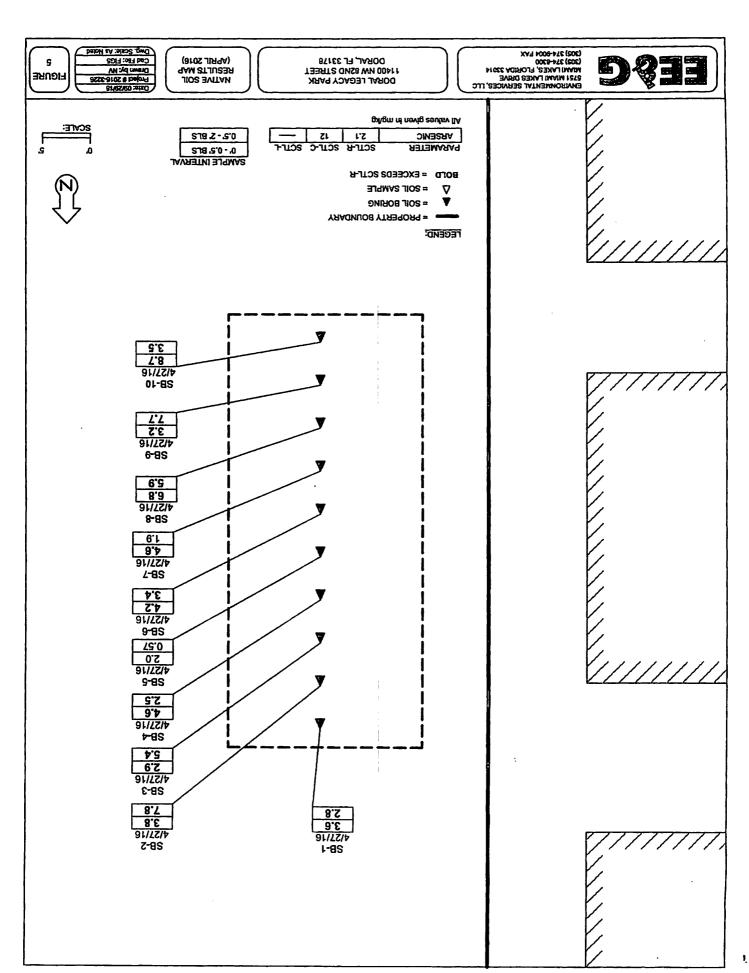
P.E. CERTIFICATION

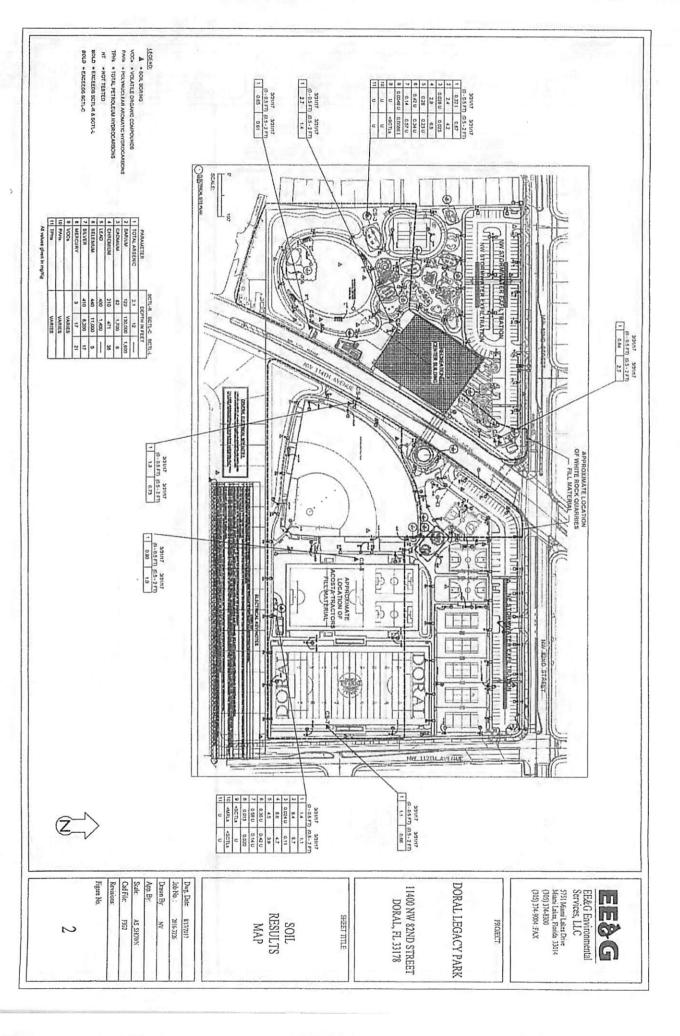
Site Assessment Report Addendum/No Further Action Proposal dated November 19, 2018 (received November 21, 2018), along with the Site Assessment Report and Addenda dated September 30, 2016 through August 24, 2018 (received October 13, 2016 through September 28, 2018), for the Doral Legacy Park Green Reuse Site, located at 11400 NW 82nd Street (Folio# 35-3007-001-0340 and 35-3007-001-0330), Doral, FL, Brownfield Site ID# 131502001, DERM HWR-647/File-N/A.

I hereby certify that in my professional judgment, the components of this Site Assessment Report/No Further Action Proposal prepared for the contamination discovered at the above-referenced facility satisfy the requirements set forth in Chapter 62-780, Florida Administrative Code (F.A.C.), and that the conclusions in this report provide reasonable assurances that the site rehabilitation objectives stated in Chapter 62-780, F.A.C., have been met.

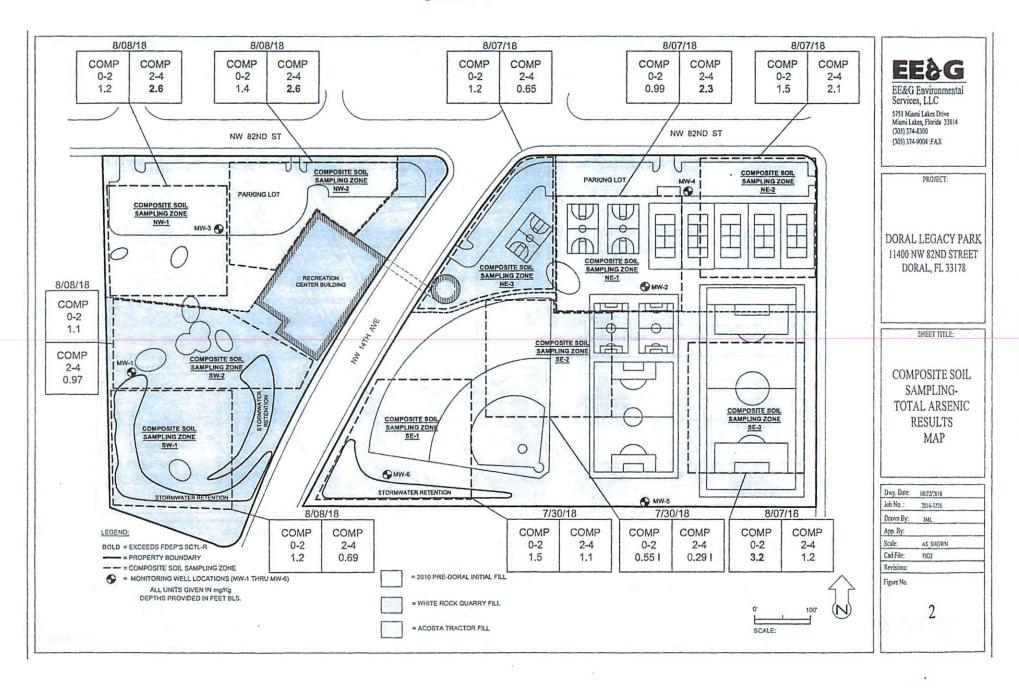
1	personally	comp	lotad	thic	roviow
ı	personally	Comp	icicu	LIIIO	ICVICVY.

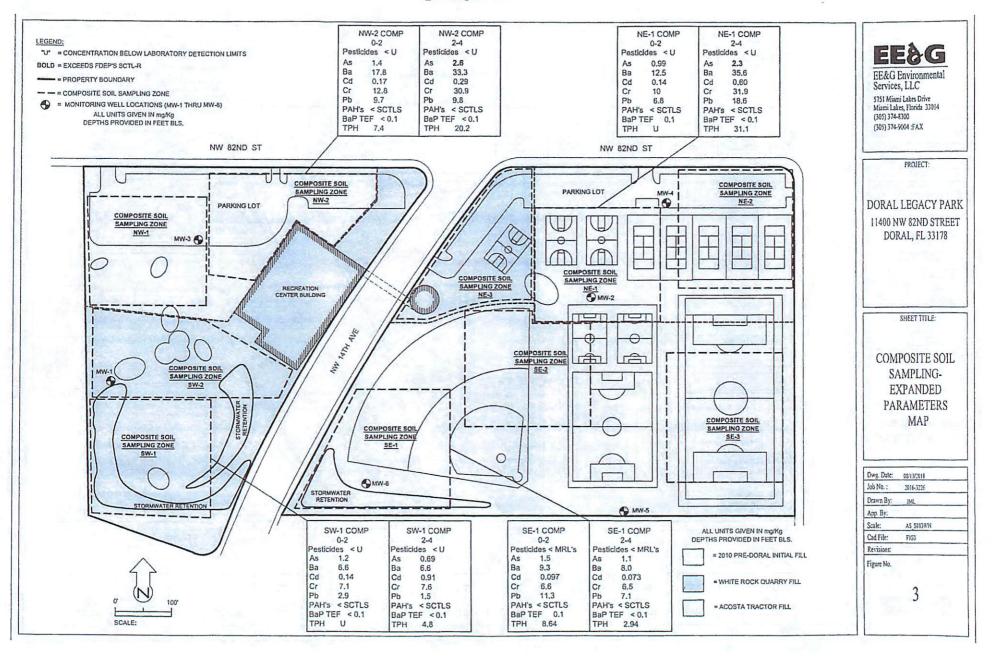

_X This review was conducted by Sandra Rezola working under my direct supervision.


Wilbur Mayorga, P.E.


Professional Engineer #50625

12-10-201Y


Date



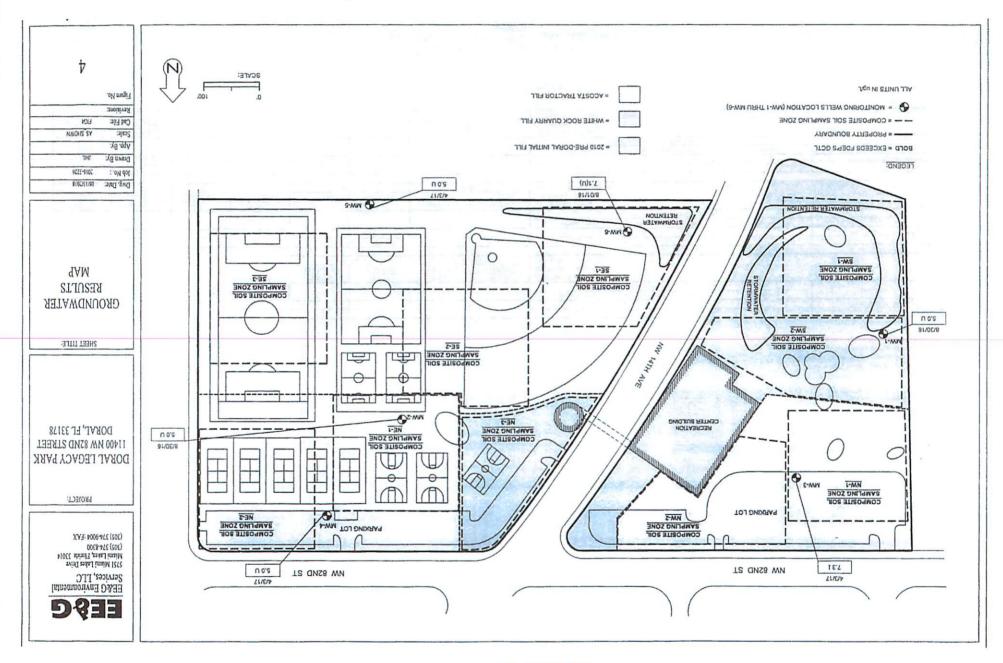


Exhibit 2

Exhibit 2

2 H914X7

TABLE 1 APRIL 2016 NATIVE SOIL ANALYTICAL RESULTS CITY OF DORAL LEGACY PARK SITE 11300 NW 81ST TERRACE DORAL, FL 33178 PROJECT No: 2016-3226

Arsonic	Total Metats by 6010 (mg/kg)		Parameter				Avsenic	Total Motals by 6010 (mg/kg)		Parameter				Amanic	Total Metals by 6010 (mg/kg)		Parameter			
2.1		Racidential					2.1		Residential					2.1		Residential				
12		CommercialIndustrial	Soil Cleanup Target Levels (SCTLs)				12		Commercial/Industrial	Soil Cleanup Target Levels (SCTLs)				12		CommercialIndustrial	Soil Cleanup Target Levels (SCTLs)			
***		Leachability	(a)	Depth (Feet-BLS):	Date Collected:	Sample Dosignation:			Leachability	<u>[</u>	Depth (Foct-BLS):	Date Collected:	Sample Designation:	•40		Leachability	(La)	Dopth (Feet-BLS):	Date Collected:	Sample Designation:
3.2				(0-0.5)	4/27/2016		2,0				(0-0.5)	427/2016		3,6				(0-0.5)	4/27/2016	
7.7				(0.5-2)	42772016	3B-9	0,57				(0.5-2)	4/27/2016	88-5	2.8				(0.5-2)	4/27/2016	SB-1
8.7				(0-0.5)	4/27/2016	92	4.2				(0-0.5)	4/27/2016	8	3.5				(0-0.5)	4/27/2016	8
3.5				(0.5-2)	4/27/2016	9B-10	3.4				(0.5-2)	4/27/2016	88-8	7,8				(0.5-2)	4/27/2016	SBZ
							4.6				(0-0.5)	4/27/2016	3	2,9				(0-0.5)	4/27/2016	es.
							1,9				(0.5-2)	4/27/2016	SB-7	23				(0.5-2)	4/27/2016	88-3
							6,8				(0-0-5)	4/27/2016	9	4,6				(0-0.5)	4/27/2016	S
							5.9				(0.5-2)	4/27/2016	9B-8	2.5				(0.5-2)	4/27/2016	SB-4

All velves given in milligrans per ktogram (mg/kg)
Bold = Anskyled result exceeded the Commercial SCTL.
Bold = Anskyled result exceeded the Lechnolity,
*** = Leadrability determined via SPLP analysis

TABLE 2 SOIL STOCKPILE/FILL ANALYTICAL RESULTS CITY OF DORAL LEGACY PARK SITE 11300 NW 81ST TERRACE **DORAL, FL 33178** PROJECT No: 2016-3226

			Sample Designation:	8P-1	SS-1	88-2	35-3	38-4	53-5	33-6
		ĺ	Depth (Feet BLS):	•	0.5-2	0.5-2	0.5-2	3-4	2-3	1-2
			Date Collected:	8/29/2016	9/13/2016	9/13/2016	9/13/2016	9/13/2016	9/13/2016	9/13/2016
0		Soil Cleanup Target Levels (SCTLs)								
Parameter	Residential	Commercial/Industrial	Leachability		ļ	ł			1	1
otal Metals by 6010 (mg/kg)										
Arsenic	2,1	12	100	1.4 (U)	1.3	0,34 (1)	0.30 (U)	0.56	0.87	0.36 (I, J (IR)
PAHs by 8270 (mg/kg)										
Naphthalene	55	300	1.2	0.067 (U)	0.023 (U)	0.023 (U)	0.011 (U)	0.052 (U)	0.012 (U)	0.012 (U)
1-Methyl Naphthalene	200	1,800	3,1	0.074 (U)	0.025 (U)	0.025 (U)	0.013 (U)	0.057 (U)	0.013 (U)	0.014 (U)
2-Methyl Naphthalene	210	2,100	8.5	0.084 (U)	0.028 (U)	0.029 (U)	0.014 (U)	0.065 (U)	0.015 (U)	0.016 (U)
Acenaphthene	2,400	20,000	2	0.078 (U)	0.026 (U)	0.026 (U)	0.013 (U)	0.059 (U)	0.014 (U)	0.014 (U)
Aconaphthylene	1,600	20,000	27	0.065 (U)	0.022 (U)	0.022 (U)	0.011 (U)	0.050 (U)	0.012 (U)	0.012 (U)
Anthracene	21,000	300,000	2,500	0.064 (U)	0.021 (U)	0.022 (U)	0.011 (U)	0.049 (U)	0.011 (U)	0.012 (U)
Benzo(a)Anthracene	#	#	0.8	0.060 (U)	0.024 (1)	0.021 (U)	0.010 (U)	0.047 (U)	0.011 (U)	0.014 (I)
Benzo(a)Pyrene	0.1	0.7	8	0.054 (i)	0.014 (1)	0.0084 (U)	0.0041 (U)	0.019 (U)	0.0043 (U)	0.015 (I)
Benzo(b)Fluoranthene	#		2.4	0.16 (U)	0.053 (U)	0.054 (U)	0.027 (U)	0.12 (U)	0.028 (U)	0.029 (U)
Benzo(ghl)Perylena	2,500	52,000	32,000	0.075 (U)	0.039 (1)	0.026 (U)	0.013 (U)	0.058 (U)	0.013 (U)	0.032 (1)
Benzo(k)Fluoranthene	#	ø	24	0.045 (U)	0.015 (U)	0.016 (U)	0.0077 (U)	0.035 (U)	0.0080 (U)	0.0083 (U)
Chrysene	#	#	77	0.074 (U)	0.025 (U)	0.028 (U)	0.013 (U)	0.057 (U)	0.013 (U)	0.016 (I)
Dibenzo(a,h)Anthracene	#	a a	0.7	0.11 (U)	0.035 (U)	0.036 (U)	0.018 (U)	0.081 (U)	0.019 (U)	0.019 (U)
Fluoranthene	3,200	59,000	1,200	0.068 (U)	0.023 (U)	0.024 (U)	0.012 (U)	0.053 (U)	0.012 (U)	0.018 (1)
Fluorena	2,600	33,000	160	0.094 (U)	0.031 (U)	0.032 (U)	0.016 (U)	0.072 (U)	0.017 (U)	0.017 (U)
Indeno(123-cd)Pyrene	#	Ħ	8.6	0,11 (U)	0.035 (U)	0.036 (U)	0.018 (U)	0.081 (U)	0.019 (U)	0.019 (U)
Phenanthrene	2,200	36,000	250	0.079 (U)	0.026 (U)	0.027 (U)	0.013 (U)	0.061 (U)	0.014 (U)	0.015 (U)
Pyrene	2,400	45,000	880	0.11 (U)	0.035 (U)	0.036 (U)	0.01B (U)	0.081 (U)	0.019 (U)	0.020 (I)
BaP TEF Equivalents	0,1	0.7		0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1

All values given in milligrams per kilogram (mg/kg)

Bold = Analytical result exceeded the Commercial SCTL.

Bold = Analytical result exceeded the Lenchability.

U = Results below the laboratory method detection limits

- I = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
 **** = Leachability determined via SPLP enalysis

- 8 = Must be converted to benzo(a) prene equivalent

 J(R) = Estimated Value. The Internal standard recovery associated with this result exceeds the upper control limit. The report result should be considered an estimated value.

Benzo(a)pyrene Conversion Table

Table 3 - For Direct Exposure Soil Cleanup Target Levels

Instructions can be found below the table

Facility/Site Name:	City of Doral Legacy Park Site
Site Location:	11300 NW 81 Terrace, Doral, FL 33178
Facility/Site ID No.:	2016-3226

TEE	- Tovic	Equivale	DOW	Englor

SCTL Type	Value	Units
Residential Direct Exposure SCTL	0.1	mg/kg
Industrial Direct Exposure SCTL	0,7	mg/kg
Alternative SCTL (Optional)		mg/kg
Site Specific Background (Optional)		mg/kg

										5.1	
	Soil Sample #	SS-1	SS-2	SS-3	SS-4	SS-5	SS-6				
	Sample Date	9/13/2016	9/13/2016	9/13/2016	9/13/2016	9/13/2016	9/13/2016				
	Sample Location:	North-Central	West	Southwest	Central	South-Central	East				
	Depth (ft):	0.5 - 2.0	0.5 - 2.0	0.5 - 2.0	3.0 - 4.0	2.0 - 3.0	1.0 - 2.0				
					ontaminant Cond					2-1-1-1	
Contaminant	TEF	SS-1 (mg/kg)	SS-2 (mg/kg)	SS-3 (mg/kg)	SS-4 (mg/kg)	SS-5 (mg/kg)	SS-6 (mg/kg)				
Benzo(a)pyrene	1.0	0.014	0.0042	0.00205	0.0095	0.00225	0.015				15 -
Benzo(a)anthracene	0.1	0.024	0.0105	0.005	0.0235	0.0055	0.014		1		1
Benzo(b)fluoranthene	0.1	0.0265	0.026	0.0135	0.06	0.014	0.0145				
Benzo(k)fluoranthene	0.01	0.0075	0.008	0.00385	0.0175	0.004	0.00425				
Chrysene	0.001	0.0125	0.013	0.0065	0.0285	0.0065	0.016				
Dibenz(a,h)anthracene	1.0	0.0175	0.028	0.009	0.0405	0.0095	0.0095				
Indeno(1,2,3-cd)pyrene	0.1	0.0175	0.028	0.009	0.0405	0.0095	0.0095				1 2 7
				E	Benzo(a)pyrene E	quivalents					T-1
Contaminant	TEF	SS-1 (mg/kg)	SS-2 (mg/kg)	SS-3 (mg/kg)	SS-4 (mg/kg)	SS-5 (mg/kg)	SS-6 (mg/kg)	77.76	WHICH BEEN		75.25
Benzo(a)pyrene	1.0	0.0140	0.0042	0.0021	0.0095	0.0023	0.0150	0.0000	0.0000	0.0000	0.0000
Benzo(a)anthracene	0.1	0.0024	0.0011	0.0005	0.0024	0.0006	0.0014	0.0000	0.0000	0.0000	0.0000
Benzo(b)fluoranthene	0.1	0.0027	0.0026	0.0014	0.0060	0.0014	0.0015	0.0000	0.0000	0.0000	0.0000
Benzo(k)fluoranthene	0.01	0.0001	0.0001	0.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Chrysene	0.001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Dibenz(a,h)anthracene	1.0	0.0175	0.0280	0.0090	0.0405	0.0095	0.0095	0.0000	0.0000	0.0000	0.0000
ndeno(1,2,3-cd)pyrene	0.1	0.0018	0.0028	0.0009	0.0041	0.0010	0.0010	0.0000	0.0000	0.0000	0.0000
					Total Equiva	lents					
Total Benzo(a)pyrene	Equivalents	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
					Comparisons to	SCTLs			W. dree.	24	
Does This Sample	Exceed:	SS-1 (mg/kg)	SS-2 (mg/kg)	SS-3 (mg/kg)	SS-4 (mg/kg)	SS-5 (mg/kg)	SS-6 (mg/kg)				
The Residential Direct Ex 0.1 mg/kg	7	ок	ок	ок	ок	ок	ок	ок	ок	ок	ок
The Industrial Direct Exp 0.7 mg/kg		ок	ок	ок	ок	ок	ок	ок	ок	ок	ок
No Alternative SC	TL Given	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
No Site Specific Backs	ground Given	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Benzo(a)pyrene Conversion Table 3

For Direct Exposure Soil Cleanup Target Levels

Facility/Site Name:

City of Doral Legacy Park Site

Location:

11300 NW 81 Terrace, Doral, FL 33178

Facility/Site ID No.:

2016-3226

Soil Sample No.

SP-1

Sample Date

8/29/2016

Location:

Stockpile located on the NW portion of site

Depth (ft):

Composite Sample

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a "J", "T" or "i" qualifier). Enter the contaminant concentrations (in mg/kg) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):

- 1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
- If not detected at the MDL (the concentration reported is the MDL followed by the "U" qualifier) enter 1/2 of the reported value;
- If detected at a concentration lower than the MDL and the concentration is estimated (has the "T" qualifier) enter the estimated value;
- 4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "I" qualifier) enter the estimated value;
- 5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the "M" qualifier) enter 1/2 of the reported value.

Contaminant	Concentration (mg/kg)	Toxic Equivalency Factor	Benzo(a)pyrene Equivalents
Benzo(a)pyrene	0.054	1.0	0.0540
Benzo(a)anthracene	0.030	0.1	0.0030
Benzo(b)fluoranthene	0.080	0.1	0.0080
Benzo(k)fluoranthene	0.023	0.01	0.0002
Chrysene	0.037	0.001	0.0000
Dibenz(a,h)anthracene	0.055	1.0	0.0550
Indeno(1,2,3-cd)pyrene	0,055	0.1	0.0055

DE Residential = 0.1 mg/kg; DE Industrial = 0.7 mg/kg

Total Benzo(a)pyrene Equivalents = 0.1

The concentration shown does not exceed the Residential Direct Exposure SCTL of 0.1 mg/kg.

The concentration shown does not exceed the Industrial Direct Exposure SCTL of 0.7 mg/kg.

	Summary Crit	eria for Table Entries	
Detection	Concentration Reported	Data Qualifier	Enter
Various	Quantified with certainty	None	reported value
Various	Estimated	J	reported (estimated) value
ND at MDL	MDL	U	1/2 reported value
< MDL	Estimated	Ť	reported (estimated) value
≥ MDL but < PQL	Estimated	I	reported (estimated) value
≥ MDL but < PQL	PQL	M	1/2 reported value

Habitana III republi Habitana III republi Habitana III republikana Habitana III republikana Habi	Parenter Test Metter to 616 (notice) Assertion Determin Controller State	Resignationes Resignations Resignations Resignations Resignations Resignations Resignation	Test Mester by 111 (m/h) Angel Ange	
1900 1900 1900 11,0	Explanel 1 2.1 119:- 62 710 400 410 410 410 410	0.1 0.1 0.000 0.000 0.000 0.000 0.1 0.1	Full-prints 181 182 182 183 446 446 446 446 470 11,000 11,000 11,000 11,000	
300 1,100 1,100 10,000 10,	Ad Cleany Tays Levil (SCT.4) Communication 12 13000 1700 1700 1700 1700 1700 1700 170	15 0.00 1 15 0.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CAMPAY INTIL I VINIT CITAL TO T	tall Citations Taiget Lawrin (SCT)
FE 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Amplie Calipations Date Colleges Chapter (Feedblat) Luceaside Luceaside 1,600 1,000 1,000 1,000 2,1 2,1 3,2 3,5 5,5 5,5 5,5 5,5 5,7 5,7 5,7 5,7 5,7 5	6.5 6.7 71,000 7		Sample Daxignation: Date Collected; Depth (Feet-BLS):
5 454544444444	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		73141 19167
5 3355555555555555555555555555555555555	23-417 23-417 0410 28 110 110 110 110 110 110 110 110 110 11	4 5444444444444	444444	0.5 to 2.9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.54 0.10 e.6 0.0 e	3 353433434343		331/17 0 to 0.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.514 Daylor 0.519 1.9 0.519 1.9 0.519 1.9 0.514 U 0.514 U 0.514 U 0.514 U 0.515 0.515 U 0.515	4 44444444444	4444444	0.5 to 2.0
5 444544444444	018 9.4 018 9.4 018 9.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	0.029 U 0.023	0.33 1 0.528 U 0.15 U 0.15 U 0.0004 U	47/17 0100.5
a aaaaaaaaaa	0.44 9.5 to 2.5 0.44 0.47 0.47 0.47 0.47 0.47 0.47 0.47	0.000 U 0.012 U 0.013 U 0.013 U 0.014 U 0.023 U 0.023 U 0.024 U 0.024 U 0.025 U 0.025 U 0.025 U		0,5 to 2,0
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	23-4 23-117 019-53 019-53 019-63 017 017 017 017 017 017 017 017 019-63	4 4444444444	4444444	25.4 171(7) 010 0,5
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.5 jp 2.9 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73	4 54544444444	333333 3 3 3 3 3 3 3 3 3 3 3	0,8 to 2,0

TPH Total	THOM BY PL PRO MIGHED	Bar TEF Equivalents	275970	Postardirece	Bud if Short I bearing	- Software		Contract of the Contract of th	Confidence	1	Banto O'S' annibate	Benzo(unilPervisore	Bento(b)/Normalisens	Banzo(a)Dyrana	Contract of the last	Benzo(s)Anthracene	Anthrapana	Acendenthylene	- Andread and a second		2-Admitty Pda.chilhudona	1-Modbyl Maghilbalane	Piephihalene	PARES by \$270 (mg/kg)	Other Pasticides	4,4-000	Pendeldes by EPA Method 1081 (mg/Kg)	Land	Checopyan	Cadmum	Bartum	20,000,00	Cardina At As A desired	Tatal Marials by 4010 transfer	Perameter					TPH, Total	Tree by FL-PRO (ingital)	Bar 12" Equivalenta	Printer	Phanashrana	Indeno(123-cd/Pyrene	Fastens	Plantinghame	Dibertzo(a,h)Anthracene	Chrysens	Benzah Yapannes	Benzo(ghi)Perylone	Benzo (b)Physrarchese	Denzo(s)Fyrene	Benzo(a)Anthracene	Anthrecene	Acensphiliplens	Agenerations	2 Adulted Mandenulana	- Additional Property of the Control	Manhibalana	PAHI by \$270 (market)	Or Control of the Con	4,4-006	Pasticidas by EPA Mathod 1011 (inti/(g)	Laid		Cadmaure	Darium	Aramo	Total Metals by 4010 product	Palameter			
450		0,1	2,400	2,500	-	4000	2000	1000	-			2,500		0.1			21,000	1,800	4,000	3 400	210	000	6.5			2.9			210	2.0	129		11		Basidential					460		9,1	2,400	3,300		2,600	2,000				2,500		0.1		21,000	1,800	2.400	210	900	200			2.9		400	210	17	120**	2.1		Besidential			
2,700		0.7	6000,63	thesi of		- Secretary	11000	60.000	1			52,000		0,7			900,000	20,000	00000	200	2,100	1,800	300		Vertes	13		1,400	477	1,000	000 001	-	-	п	Commercial Industrial	Charles Towns I would be				1,100		0.7	45,000	36,000	-	32,000	69,000			-	\$2,000	-	0.7		200,000	20,000	20,000	7,000	100	200		Varian	15		1,400	170	1,700	130,000	12		Commercial County of County			
340			080	190		-	100	100		77	34	32,500	2.4			0.2	2,500	27		,	1.5	2.1	1.2			-		***	38		1,900				Laschability		Depth Pest-BLSE	Data Codected:	Sample Daskonston:	340			880	250	6.6	.60	1,200	0.7	77	24	32,000	2.4	-	0.8	7,500	77	-	-		13			=		**		-	1,600	140		Leschanding	Depth (Feet-BLS):	Date Codected:	Sample Designation:
N7	Contract of the Contract of th	NT.	2	N.			-			K7	NT.	Z	NT.	74		NT	NT	134		MT	M	NT	NT		N.T.	NT.		NT.	2	NI	741		-		The same of the sa	-	0102	8/7/18	Groot Care	8.8 0		0.1	0.17	9.12	0.022 1	0.012 U	0.18	0.021 U	0.041	0.024 1	0,023 U	0.059	0.039	0.054	O \$10.0	0.028 U	0.031 U	00040	D SECO	0001		4	0.0035 1		113	0.0	0.097	93	1.5			0 10 2	773971	RE-1 COMP
N	The state of the s	114	7.	7.			-	-	1		N.	M	M	741		The	NT NT	N		N.	IN	HT	NT		MI	MT		NT	111	2	71	2000	0.85	-		-	2104	WAY.	ARICO LIN	290		0.0	0.050	1 610.0	0.014 1	0.013.0	0,059	0.0087 U	0.038	1 810'0	1 510'0	9.061	1 0000	0.017	0.013 U	0.012 U	0.013 U	0.014.0	0015	0011	-		0.0094		7.1		8.0		1.1			2104	7/3/14	SE-1 COMP
N	The state of the little of	NT	71	71			1			N. T.	N.	NT.	1.74	2	-	MT	IN	IN		1	TN	NT	IN		NT	NI		NT	7	7.	21		1		-		0 10 2	8178	WHOO FAM	N		NI	N.	M	NT	IN	NT.	N.	IN	NT.	N	IN	NT	NT TN	IN	N.T	MT	N.	NY.	N.		1	IN		134	-	IN	M	0.65 (-		2 04.0	87778	TE-1 COMP
M		IN	74			-			7.		17	IN	DN.	***		NT	M	IN		NT.	IN.	NT	IN		NT.	NT		NT	N.	21	-		1				7104	81/818	WW-1 COMP	MI		N	IN	MT	MT	NT	NY	NT	NT	NT	NT.	NT	IN	NT TN	NT TN	TN TN	NT	N.	N.	1		NT.	M		NT.	174	TN	NT	0.39			2 10 4	87748	TE-2 COMP
7.4		0.0	250,0	0.048	10.000	2000	0000	2000	2000	0031	0010 0	0.021	0.028 1	1 010'0		0.020	0.013 U	0.012 0	1000	0.013 17	0.034	0.023 1	0.030 1		0	0.00000		9.7	17.8	0.17	11.0						0102	87578	NW-3 COMP	N		181	IN	NT.	IN	M	Z	IN	NT.	IN.	NT	M	NT	N.Y	IN	NT.	3	1	1	4		N	N		MT	N.	IN	NT.	22			0 to 2	87778	TE-3 COMP
20.2		0.0	O AFORD	0,041	0.000	200	0044		0.000.0	0000	0.000	0.031 U	0.000	0.000	200	0.035 0	0,044 U	0,629,0	-	00430	0.047 U	0.049 U	0.043 U		-	0.000.0		9.0	30,9	0.79	1,1		1				2104	11774	ANG COMP	NT.		IN	NT	IN.	IN	MT	M	IN	TN.	NT TW	NT	NT	NT	W	NT	NT	MT	M	N.	**		NT.	IM		IN	N	IN	111	12			2104	6/7/18	SE-3 COMP
2.7 U		0.0	6500	0.014.0	0.014.0	2000	0013	2000	2000	0037	0013 11	0.017 U	9000	0.170.0	1	0.020 U	0.013 0	0.011 0	0010	0017	D.014 U	0014 U	0.012 U		0	0.00085 U		7.9	1.1	0.14	0.0		3			-	9102	11/2/4	SWCO LWS	270		9,1	0.11	0.060	0.026	0.012 U	0.11	0.0000 U	0.060	0.024	0.033	0.067	1000	1 000	0,012 U	0.011 U	0.512.0	0.073	202	0.023			0.00084 U		6.8		0.14	12.5	0.99			0 to 2	87778	ARIA COMP
4.8		0.0	0.010.0	0.210.0	0.0000	2000	0013	2000	0.0110	0	0 0000	0.00a9 U	U 9600'6	0.00000		0.010 U	0.013 U	0 1100		0000	0.014 U	0.014 U	0012 U		0	0.000000		1.5	1,0	1,60'0	0.0	1	2	-		- 100		11/1/4	AMA COMP	31.1		0.0	0.049	0.16	0.0099	0.014 U	0,045	0.0001 U	0.040	0.011 1/	0.020 1	0.024 U	0.020 1	0.029	0.014 U	0.012 U	0.014	0.34	0 11	0.25			U 90000.0		14.0	31.0	0.4	35.0	1.1			2104	8/7/18	ME-I COMP
M		NT	184	I.M.	2	-	1			-	NT.	M	NT	241		M	M	N	-	4	NT.	174	NT IN		NT.	M		MT	NI.	141	130			-		1	0 10	100	ewoo cows	M		NT.	NT.	N	N	NT.	MT	NT TN	M	N	N	NT.	N	NT THE	M	N.	14	5		-		5	M		7	17	10	171	15			0 to 2	87778	ANT S COMP
NT.		M	IN	N	2	100	-		2		1	N.	. NT	IN		NT.	NT	N	-	5	17	IN	171		NT.	NT		IN	NT.	-	NI	V. 8.	0.63			4 10	1	NIAM.	SWC COMP	NT.		N	NT	NT	NT.	NT.	114	IN	314	T. T.	NT.	NT	N	NT T	NT.	NT.	2	-		N.		-	N		M	17	M	M	2.1			7104	2/7718	WELT COMP

Exhibit 3

Benzo(a)pyrene Conversion Table

Table 3 - For Direct Exposure Soil Cleanup Target Levels

Instructions can be found below the table

Facility/Site Name:	Doral Legacy Park (2016-3226)	
Site Location:	11400 NW 82nd St, Doral, FL	
Facility/Site ID No.:		

TEE -	Tovic	Equiva	oncu	Factor
151 -	LOVIC	Lquiva	CHICY	Lactor

SCTL Type	Value	Units	
Residential Direct Exposure SCTL	0.1	mg/kg	
Industrial Direct Exposure SCTL	0.7	mg/kg	
Alternative SCTL (Optional)		mg/kg	
Site Specific Background (Optional)		mg/kg	

	Soil Sample #	NE-1 COMP	NE-1 COMP	NW-2 COMP	NW-2 COMP	SW-1 COMP	SW-1 COMP	SE-1 COMP	SE-1 COMP		
	Sample Date	8/7/2018	8/7/2018	8/8/2018	8/8/2018	8/8/2018	8/8/2018	7/30/2018	7/30/2018		
	Sample Location:			The second							
the second second	Depth (ft):	0 to 2	2 to 4								
				C	ontaminant Cond	entrations					
Contaminant	TEF	NE-1 COMP (mg/kg)	NE-1 COMP (mg/kg)	NW-2 COMP (mg/kg)	NW-2 COMP (mg/kg)	SW-1 COMP (mg/kg)	SW-1 COMP (mg/kg)	SE-1 COMP (mg/kg)	SE-1 COMP (mg/kg)		
Benzo(a)pyrene	1.0	0.037	0.020	0.018	0.016	0.021	0.004	0.039	0.030		E
Benzo(a)anthracene	0.1	0.033	0.029	0.020	0.018	0.020	0.005	0.054	0.027		
Benzo(b)fluoranthene	0.1	0.067	0.024	0.028	0.016	0.036	0.005	0.059	0.051		
Benzo(k)fluoranthene	0.01	0.024	0.006	0,005	0.016	0,013	0.005	0.026	0,019		
Chrysene	0.001	0,060	0,040	0,031	0.020	0.027	0,006	0.061	0.038		
Dibenz(a,h)anthracene	1.0	0.004	0.005	0.004	0.014	0.004	0.004	0.010	0.004		
Indeno(1,2,3-cd)pyrene	0.1	0.026	0.010	0.013	0.014	0.014	0.004	0.022	0.014		
					Benzo(a)pyrene E					THE RESERVE OF THE PARTY OF THE	
Contaminant	TEF	NE-1 COMP (mg/kg)	NE-1 COMP (mg/kg)	NW-2 COMP (mg/kg)	NW-2 COMP (mg/kg)	SW-1 COMP (mg/kg)	SW-1 COMP (mg/kg)	SE-1 COMP (mg/kg)	SE-1 COMP (mg/kg)		6
Benzo(a)pyrene	1.0	0.0370	0.0200	0.0180	0.0160	0.0210	0.0040	0.0390	0.0300	0.0000	0.0000
Benzo(a)anthracene	0.1	0.0033	0.0029	0.0020	0.0018	0.0020	0.0005	0.0054	0.0027	0.0000	0.0000
Benzo(b)fluoranthene	0.1	0.0067	0.0024	0.0028	0.0016	0.0036	0.0005	0.0059	0.0051	0.0000	0.0000
Benzo(k)fluoranthene	0.01	0.0002	0.0001	0.0001	0.0002	0.0001	0.0001	0.0003	0.0002	0.0000	0.0000
Chrysene	0.001	0.0001	0.0000	0.0000	0.0000	0.0000	0,0000	0,0001	0.0000	0.0000	0.0000
Dibenz(a,h)anthracene	1.0	0.0040	0.0050	0.0040	0.0140	0.0040	0.0040	0.0100	0.0040	0.0000	0.0000
ndeno(1,2,3-cd)pyrene	0.1	0.0026	0.0010	0.0013	0.0014	0.0014	0.0004	0.0022	0.0014	0.0000	0.0000
		et skilleringen. In			Total Equiva	lents					
Total Benzo(a)pyrene	Equivalents	0.1	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
					Comparisons to	SCTLs					
Does This Sample	Exceed:	NE-1 COMP (mg/kg)	NE-1 COMP (mg/kg)	NW-2 COMP (mg/kg)	NW-2 COMP (mg/kg)	SW-1 COMP (mg/kg)	SW-1 COMP (mg/kg)	SE-1 COMP (mg/kg)	SE-1 COMP (mg/kg)		
The Residential Direct Ex 0.1 mg/kg	A STATE OF THE PARTY OF THE PAR	ОК	ОК								
The Industrial Direct Exposure SCTL of 0.7 mg/kg?		ок	ок								
No Alternative SC	TL Given	N/A	N/A								
No Site Specific Back	ground Given	N/A	N/A								

Exhibit 3

TABLE 4 GROUNDWATER ANALYTICAL RESULTS CITY OF DORAL LEGACY PARK

11300 NW 81 TERRACE

DORAL, FL 33178

PROJECT No: 2016-3226

		Sample Designation:	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6
l		Date Sampled:	8/30/2016	8/30/2016	4/3/17	4/3/17	4/3/17	8/1/18
Parameter	Groundwater Cleanup Target Levels '	Natural Attenuation Default Source Concentrations '						
Total Metals by 5010 (µg/L)								
Arsenic	10	100	5.0 (U)	5.0 (U)	7.3 (1)	5.0 (U)	5.0 (U)	7.1 (U)

Notes:

All values given in micrograms per liter (µg/L)

Bold = Analytical result exceeded the GCTL.

Bold = Analytical result exceeded the NADSC.

U = Results below the laboratory method detection limits

I = Result between the method detection and reporting limits

¹⁼ Groundwater cleanup target levels as established in Chapter 62-777 of the Florida Administrative Code (FAC).

TABLE 2A

95% UCL SOIL ANALYSIS - TOTAL ARSENIC

Composite Soil Samples Collected August 2018 - 0 to 2-ft BLS Interval DORAL LEGACY PARK

11400 NW 82nd Street, Doral FL 33178

PROJECT No: 2016 - 3226

User Selected Options		0 to Z-feet BLS	
Date/Time of Computation	ProUCL 5.18/24/2018 12:53	2:30 PM Data Set (mg/Kg)	
From File	WorkSheet.xls	1,2	
Full Precision	OFF	1.2	
Confidence Coefficient	95%	1.4	
Number of Bootstrap Operation	ns 2000	1.2	
		1.1	
		1.5	
0		0.55	
		3.2	
		0.99	
Seneral Statistics		1.5	
Total Number of Observations	10	Number of Distinct Observations	7
		Number of Missing Observations	0
Minimum	0.55	Mean	1.384
Maximum	3.2	Median	1.2
SD	0.696	Std. Error of Mean	0.22
Coefficient of Variation	0.503	Skewness	2.188
agnormal COE Tast			
ognormal GOF Test Shapiro Wilk Test Statistic	0.888	Shapiro Wilk Lognormal GOF Test	
% Shapiro Wilk Critical Value	0.888		
illiefors Test Statistic	0.842	Data appear Lognormal at 5% Significance Level	
5% Lilliefors Critical Value	0.248	Lilliefors Lognormal GOF Test	
on Lillerors Critical Value Data appear Lognormal at 5% S	20 255	Data appear Lognormal at 5% Significance Level	
ogged Statistics Ainimum of Logged Data	-0.598	Mean of logged Data	0.234
Maximum of Logged Data	1.163	SD of logged Data	0.436
naximum or Logged Data	1.103	SD of logged Data	0.436
ognormal Maximum likelihood			
ALE Mean	1.39	MLE Standard Deviation	0.636
MLE Median	1.264	MLE Skewness	1.469
MLE Coefficient of Variation	0.458	80% MLE Quantile	1.825
90% MLE Quantile	2.211	95% MLE Quantile	2.59
99% MLE Quantile	3.487		
ognormal Minimum Variance U	Inbiased Estimates (MVUEs)		
MVUE Mean	1.376	MVUE SD	0.609
MVUE Median	1.252	MVUE SEM	0.192
Assuming Lognormal Distributio	n		
95% H-UCL	1.896	90% Chebyshev (MVUE) UCL	1.954
95% Chebyshev (MVUE) UCL	2.215	97.5% Chebyshev (MVUE) UCL	2.578
99% Chebyshev (MVUE) UCL	3.291		
Nonparametric Distribution Fre	e UCLs		
95% CLT UCL	1.746	95% Jackknife UCL	1.787
95% Standard Bootstrap UCL	1.73	95% Bootstrap-t UCL	2.11
95% Hall's Bootstrap UCL	3.477	95% Percentile Bootstrap UCL	1.779
95% BCA Bootstrap UCL	1.899	servine address up to ac	2.775
90% Chebyshev(Mean, 5d) UC		95% Chebyshev(Mean, Sd) UCL	2.343
97.5% Chebyshev(Mean, Sd) UC		99% Chebyshev(Mean, Sd) UCL	3.573
Suggested UCL to Use			
95% Student's-t UCL	1.787		
	1.813		
or 95% Modified-t UCL or 95% H-UCL	1.813 1.896		

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Malchle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

ProUCL computes and outputs H-statistic based UCLs for historical reasons only.

H-statistic often results in unstable (both high and low) values of UCL95 as shown in examples in the Technical Guide.

It is therefore recommended to avoid the use of H-statistic based 95% UCLs.

Use of nonparametric methods are preferred to compute UCL95 for skewed data sets which do not follow a gamma distribution.

Exhibit 3

TABLE 2B

95% UCL SOIL ANALYSIS - TOTAL ARSENIC

Composite Soil Samples Collected August 2018 - 2 to 4-ft BLS Interval

DORAL LEGACY PARK

11400 NW 82nd Street, Doral FL 33178 PROJECT No: 2016 - 3226

Normal UCL Statistics for Uncer	nsored Full Data Sets		
User Selected Options		2 to 4-feet BLS	
Date/Time of Computation	ProUCL 5.18/24/2018 1:02:33 PM	Data Set (mg/Kg)	
From File	WorkSheet.xls	0.65	
Full Precision	OFF	2.6	
Confidence Coefficient	95%	2.6	
		0.69	
		0.97	
		1.1	
CO		0.29	
		1.2	
		2.3	
General Statistics		2.1	
Total Number of Observations	10	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	0.29	Mean	1.45
Maximum	2.6	Median	1.15
SD	0.867	SD of logged Data	0.721
Coefficient of Variation	0.598	Skewness	0.266
Normal GOF Test			
Shapiro Wilk Test Statistic	0.89	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.213	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level	
Data appear Normal at 5% Sign	ificance Level		
Assuming Normal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1.953	95% Adjusted-CLT UCL (Chen-1995)	1.926
		95% Modified-t UCL (Johnson-1978)	1.957

Suggested UCL to Use

95% Student's-t UCL 1.953

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.